Tuesday, December 12, 2017

Pandas Kütüphanesi Ders - 7

Lesson 7



These tutorials are also available through an email course, please visit http://www.hedaro.com/pandas-tutorial to sign up today.

Outliers

In [1]:
import pandas as pd
import sys
In [2]:
print('Python version ' + sys.version)
print('Pandas version ' + pd.__version__)
Python version 3.5.1 |Anaconda custom (64-bit)| (default, Feb 16 2016, 09:49:46) [MSC v.1900 64 bit (AMD64)]
Pandas version 0.20.1
In [3]:
# Create a dataframe with dates as your index
States = ['NY', 'NY', 'NY', 'NY', 'FL', 'FL', 'GA', 'GA', 'FL', 'FL'] 
data = [1.0, 2, 3, 4, 5, 6, 7, 8, 9, 10]
idx = pd.date_range('1/1/2012', periods=10, freq='MS')
df1 = pd.DataFrame(data, index=idx, columns=['Revenue'])
df1['State'] = States

# Create a second dataframe
data2 = [10.0, 10.0, 9, 9, 8, 8, 7, 7, 6, 6]
idx2 = pd.date_range('1/1/2013', periods=10, freq='MS')
df2 = pd.DataFrame(data2, index=idx2, columns=['Revenue'])
df2['State'] = States
In [4]:
# Combine dataframes
df = pd.concat([df1,df2])
df
Out[4]:
RevenueState
2012-01-011.0NY
2012-02-012.0NY
2012-03-013.0NY
2012-04-014.0NY
2012-05-015.0FL
2012-06-016.0FL
2012-07-017.0GA
2012-08-018.0GA
2012-09-019.0FL
2012-10-0110.0FL
2013-01-0110.0NY
2013-02-0110.0NY
2013-03-019.0NY
2013-04-019.0NY
2013-05-018.0FL
2013-06-018.0FL
2013-07-017.0GA
2013-08-017.0GA
2013-09-016.0FL
2013-10-016.0FL

Ways to Calculate Outliers

Note: Average and Standard Deviation are only valid for gaussian distributions.
In [5]:
# Method 1

# make a copy of original df
newdf = df.copy()

newdf['x-Mean'] = abs(newdf['Revenue'] - newdf['Revenue'].mean())
newdf['1.96*std'] = 1.96*newdf['Revenue'].std()  
newdf['Outlier'] = abs(newdf['Revenue'] - newdf['Revenue'].mean()) > 1.96*newdf['Revenue'].std()
newdf
Out[5]:
RevenueStatex-Mean1.96*stdOutlier
2012-01-011.0NY5.755.200273True
2012-02-012.0NY4.755.200273False
2012-03-013.0NY3.755.200273False
2012-04-014.0NY2.755.200273False
2012-05-015.0FL1.755.200273False
2012-06-016.0FL0.755.200273False
2012-07-017.0GA0.255.200273False
2012-08-018.0GA1.255.200273False
2012-09-019.0FL2.255.200273False
2012-10-0110.0FL3.255.200273False
2013-01-0110.0NY3.255.200273False
2013-02-0110.0NY3.255.200273False
2013-03-019.0NY2.255.200273False
2013-04-019.0NY2.255.200273False
2013-05-018.0FL1.255.200273False
2013-06-018.0FL1.255.200273False
2013-07-017.0GA0.255.200273False
2013-08-017.0GA0.255.200273False
2013-09-016.0FL0.755.200273False
2013-10-016.0FL0.755.200273False
In [6]:
# Method 2
# Group by item

# make a copy of original df
newdf = df.copy()

State = newdf.groupby('State')

newdf['Outlier'] = State.transform( lambda x: abs(x-x.mean()) > 1.96*x.std() )
newdf['x-Mean'] = State.transform( lambda x: abs(x-x.mean()) )
newdf['1.96*std'] = State.transform( lambda x: 1.96*x.std() )
newdf
Out[6]:
RevenueStateOutlierx-Mean1.96*std
2012-01-011.0NYFalse5.007.554813
2012-02-012.0NYFalse4.007.554813
2012-03-013.0NYFalse3.007.554813
2012-04-014.0NYFalse2.007.554813
2012-05-015.0FLFalse2.253.434996
2012-06-016.0FLFalse1.253.434996
2012-07-017.0GAFalse0.250.980000
2012-08-018.0GAFalse0.750.980000
2012-09-019.0FLFalse1.753.434996
2012-10-0110.0FLFalse2.753.434996
2013-01-0110.0NYFalse4.007.554813
2013-02-0110.0NYFalse4.007.554813
2013-03-019.0NYFalse3.007.554813
2013-04-019.0NYFalse3.007.554813
2013-05-018.0FLFalse0.753.434996
2013-06-018.0FLFalse0.753.434996
2013-07-017.0GAFalse0.250.980000
2013-08-017.0GAFalse0.250.980000
2013-09-016.0FLFalse1.253.434996
2013-10-016.0FLFalse1.253.434996
In [7]:
# Method 2
# Group by multiple items

# make a copy of original df
newdf = df.copy()

StateMonth = newdf.groupby(['State', lambda x: x.month])

newdf['Outlier'] = StateMonth.transform( lambda x: abs(x-x.mean()) > 1.96*x.std() )
newdf['x-Mean'] = StateMonth.transform( lambda x: abs(x-x.mean()) )
newdf['1.96*std'] = StateMonth.transform( lambda x: 1.96*x.std() )
newdf
Out[7]:
RevenueStateOutlierx-Mean1.96*std
2012-01-011.0NYFalse4.512.473364
2012-02-012.0NYFalse4.011.087434
2012-03-013.0NYFalse3.08.315576
2012-04-014.0NYFalse2.56.929646
2012-05-015.0FLFalse1.54.157788
2012-06-016.0FLFalse1.02.771859
2012-07-017.0GAFalse0.00.000000
2012-08-018.0GAFalse0.51.385929
2012-09-019.0FLFalse1.54.157788
2012-10-0110.0FLFalse2.05.543717
2013-01-0110.0NYFalse4.512.473364
2013-02-0110.0NYFalse4.011.087434
2013-03-019.0NYFalse3.08.315576
2013-04-019.0NYFalse2.56.929646
2013-05-018.0FLFalse1.54.157788
2013-06-018.0FLFalse1.02.771859
2013-07-017.0GAFalse0.00.000000
2013-08-017.0GAFalse0.51.385929
2013-09-016.0FLFalse1.54.157788
2013-10-016.0FLFalse2.05.543717
In [8]:
# Method 3
# Group by item

# make a copy of original df
newdf = df.copy()

State = newdf.groupby('State')

def s(group):
    group['x-Mean'] = abs(group['Revenue'] - group['Revenue'].mean())
    group['1.96*std'] = 1.96*group['Revenue'].std()  
    group['Outlier'] = abs(group['Revenue'] - group['Revenue'].mean()) > 1.96*group['Revenue'].std()
    return group

Newdf2 = State.apply(s)
Newdf2
Out[8]:
RevenueStatex-Mean1.96*stdOutlier
2012-01-011.0NY5.007.554813False
2012-02-012.0NY4.007.554813False
2012-03-013.0NY3.007.554813False
2012-04-014.0NY2.007.554813False
2012-05-015.0FL2.253.434996False
2012-06-016.0FL1.253.434996False
2012-07-017.0GA0.250.980000False
2012-08-018.0GA0.750.980000False
2012-09-019.0FL1.753.434996False
2012-10-0110.0FL2.753.434996False
2013-01-0110.0NY4.007.554813False
2013-02-0110.0NY4.007.554813False
2013-03-019.0NY3.007.554813False
2013-04-019.0NY3.007.554813False
2013-05-018.0FL0.753.434996False
2013-06-018.0FL0.753.434996False
2013-07-017.0GA0.250.980000False
2013-08-017.0GA0.250.980000False
2013-09-016.0FL1.253.434996False
2013-10-016.0FL1.253.434996False
In [9]:
# Method 3
# Group by multiple items

# make a copy of original df
newdf = df.copy()

StateMonth = newdf.groupby(['State', lambda x: x.month])

def s(group):
    group['x-Mean'] = abs(group['Revenue'] - group['Revenue'].mean())
    group['1.96*std'] = 1.96*group['Revenue'].std()  
    group['Outlier'] = abs(group['Revenue'] - group['Revenue'].mean()) > 1.96*group['Revenue'].std()
    return group

Newdf2 = StateMonth.apply(s)
Newdf2
Out[9]:
RevenueStatex-Mean1.96*stdOutlier
2012-01-011.0NY4.512.473364False
2012-02-012.0NY4.011.087434False
2012-03-013.0NY3.08.315576False
2012-04-014.0NY2.56.929646False
2012-05-015.0FL1.54.157788False
2012-06-016.0FL1.02.771859False
2012-07-017.0GA0.00.000000False
2012-08-018.0GA0.51.385929False
2012-09-019.0FL1.54.157788False
2012-10-0110.0FL2.05.543717False
2013-01-0110.0NY4.512.473364False
2013-02-0110.0NY4.011.087434False
2013-03-019.0NY3.08.315576False
2013-04-019.0NY2.56.929646False
2013-05-018.0FL1.54.157788False
2013-06-018.0FL1.02.771859False
2013-07-017.0GA0.00.000000False
2013-08-017.0GA0.51.385929False
2013-09-016.0FL1.54.157788False
2013-10-016.0FL2.05.543717False
Assumign a non gaussian distribution (if you plot it, it will not look like a normal distribution)
In [10]:
# make a copy of original df
newdf = df.copy()

State = newdf.groupby('State')

newdf['Lower'] = State['Revenue'].transform( lambda x: x.quantile(q=.25) - (1.5*(x.quantile(q=.75)-x.quantile(q=.25))) )
newdf['Upper'] = State['Revenue'].transform( lambda x: x.quantile(q=.75) + (1.5*(x.quantile(q=.75)-x.quantile(q=.25))) )
newdf['Outlier'] = (newdf['Revenue'] < newdf['Lower']) | (newdf['Revenue'] > newdf['Upper']) 
newdf
Out[10]:
RevenueStateLowerUpperOutlier
2012-01-011.0NY-7.00019.000False
2012-02-012.0NY-7.00019.000False
2012-03-013.0NY-7.00019.000False
2012-04-014.0NY-7.00019.000False
2012-05-015.0FL2.62511.625False
2012-06-016.0FL2.62511.625False
2012-07-017.0GA6.6257.625False
2012-08-018.0GA6.6257.625True
2012-09-019.0FL2.62511.625False
2012-10-0110.0FL2.62511.625False
2013-01-0110.0NY-7.00019.000False
2013-02-0110.0NY-7.00019.000False
2013-03-019.0NY-7.00019.000False
2013-04-019.0NY-7.00019.000False
2013-05-018.0FL2.62511.625False
2013-06-018.0FL2.62511.625False
2013-07-017.0GA6.6257.625False
2013-08-017.0GA6.6257.625False
2013-09-016.0FL2.62511.625False
2013-10-016.0FL2.62511.625False
This tutorial was created by HEDARO

No comments:

Post a Comment

file tree for nodejs project

 find . \( -path "*/node_modules" -o -path "*/.git" \) -prune -o -print | tree -a -I 'node_modules|.git'